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The considered problem

In this talk we consider the following system of evolution
∂αt u(t, x) + (−∆)su(t, x) = f in Ω× (0,T ),

+ Intial conditions,

+ Boundary conditions.

(1.1)

Here α > 0 is a real number, 0 < s ≤ 1, Ω ⊂ RN is a bounded open set
with Lipschitz continuous boundary ∂Ω, (−∆)s is the fractional
Laplacian and ∂αt is a fractional time derivative of Caputo type.

If α = 1 (resp. α = 2) we have the heat (resp. wave) equation.

If 0 < α < 1 such an equation is said to be of slow diffusion.

If 1 < α < 2 then it is said to be of super diffusion.
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Questions

How to define the fractional Laplace operator (−∆)s?

How to define a time fractional derivative ∂αt ?

Which initial and boundary conditions make the system (1.1) well
posed as a Cauchy problem?

Is there a function f such that solutions of the system can rest at
some time T > 0? In other words, is such system null controllable?
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The fractional Laplacian: Using Fourier Analysis

Using Fourier analysis, we have that the fractional Laplace operator
(−∆)s can be defined as the pseudo-differential operator with symbol
|ξ|2s . That is,

(−∆)su = CN,sF−1
(
|ξ|2sF(u)

)
,

where F and F−1 denote the Fourier, and the inverse Fourier, transform,
respectively, and C (N, s) is an appropriate normalizing constant.
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The fractional Laplacian: Using Singular Integrals

Let 0 < s < 1 and ε > 0 be real numbers. For a measurable function
u : RN → R we let

(−∆)sεu(x) = CN,s

∫
{y∈RN : |x−y |>ε}

u(x)− u(y)

|x − y |N+2s
dy , x ∈ RN .

The fractional Laplacian (−∆)s is defined for x ∈ RN by

(−∆)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x − y |N+2s
dy = lim

ε↓0
(−∆)sεu(x),

provided that the limit exists, where CN,s :=
s22sΓ

(
N+2s

2

)
π

N
2 Γ(1− s)

. Here Γ

denotes the usual Euler-Gamma function.
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The fractional Laplacian: Using the Caffarelli-Silvestre extension

Let 0 < s < 1. For u : RN → R in an appropriate space, consider the
harmonic extension W : [0,∞)× RN → R. That is the unique weak
solution of the Dirichlet problem{

Wtt + 1−2s
t Wt + ∆xW = 0 in (0,∞)× RN ,

W (0, ·) = u in RN .
(2.1)

Then the fractional Laplace operator can be defined as

(−∆)su(x) = −ds lim
t→0+

t1−2sWt(t, x), x ∈ RN ,

where the constant ds is given by ds := 22s−1 Γ(s)

Γ(1− s)
. This is called in

the literature, the Caffarelli-Silvestre extension.
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All the definitions coincide

Let 0 < s < 1. Then

(−∆)su(x) =CN,sF−1
(
|ξ|2sF(u)

)
=CN,sP.V.

∫
RN

u(x)− u(y)

|x − y |N+2s
dy

=− ds lim
t→0+

t1−2sWt(t, x),

where we recall that W : [0,∞)× RN → R is the unique weak
solution of the Dirichlet problem (2.1).

It is clear that (−∆)s is a nonlocal operator. That is,

supp[(−∆)su] 6⊂ supp[u].
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Derivation of singular integrals: Long jump random walks

Let K : RN → [0,∞) be an even function such that∑
k∈ZN

K(k) = 1. (2.2)

Given a small h > 0, we consider a random walk on the lattice hZN .

We suppose that at any unit time τ (which may depend on h) a
particle jumps from any point of hZN to any other point.

The probability for which a particle jumps from a point hk ∈ hZN

to the point hk̃ is taken to be K(k − k̃) = K(k̃ − k). Note that,
differently from the standard random walk, in this process the
particle may experience arbitrarily long jumps, though with small
probability.
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Long jump random walks: Continue

Let u(x , t) be the probability that our particle lies at x ∈ hZN at
time t ∈ τZ.

Then u(x , t + τ) is the sum of all the probabilities of the possible
positions x + hk at time t weighted by the probability of jumping
from x + hk to x . That is,

u(x , t + τ) =
∑
k∈ZN

K(k)u(x + hk, t).

Using (2.2) we get the following evolution law:

u(x , t + τ)− u (x , t) =
∑
k∈ZN

K(k) [u(x + hk , t)− u(x , t)] . (2.3)
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Long jump random walks: Continue

In particular, in the case when τ = h2s and K is homogeneous i.e.,

K(y) = |y |−(N+2s) for y 6= 0, K(0) = 0, and 0 < s < 1,

then (2.2) holds and K(k)/τ = hNK(hk).

Therefore, we can rewrite (2.3) as follows:

u(x , t + τ)− u(x , t)

τ
= hN

∑
k∈ZN

K(hk) [u(x + hk, t)− u(x , t)] .

(2.4)

Notice that the term on the right-hand side of (2.4) is just the
approximating Riemann sum of∫

RN

K(y) [u(x + y , t)− u(x , t)] dy .
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Long jump random walks: Continue

Thus letting τ = h2s → 0+ in (2.4), we obtain the evolution
equation

∂tu(x , t) =

∫
RN

u(x + y , t)− u(x , t)

|y |N+2s
dy . (2.5)

Notice that (2.5) has a singularity at y = 0. But when 0 < s < 1
and the function u is smooth, then it can be viewed as a Principal
Value as we have clarified above. More precisely, we have the
following:

lim
ε↓0

∫
RN\B(0,ε)

u(x + y , t)− u(x , t)

|y |N+2s
dy

= lim
ε↓0

∫
RN\B(x,ε)

u(z , t)− u(x , t)

|z − x |N+2s
dz

= − (CN,s)−1 (−∆)su(x , t).
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Long jump random walks: Conclusion

We have shown above that a simple random walk with possibly long
jumps produces, at the limit a singular integral with a homogeneous
kernel.
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The limit as s ↑ 1

Let u, v be smooth functions with compact support in Ω. That is,
u, v ∈ D(Ω). Then the following holds.

lim
s↑1−

∫
RN

v(−∆)sudx = −
∫

Ω

v∆udx =

∫
Ω

∇u · ∇v dx .

Proof

Using a result due to Bourgain, Brezis and Mironescu we get:

lim
s↑1−

∫
RN

u(−∆)sudx

= lim
s↑1

s22s−1Γ
(
N+2s

2

)
π

N
2 (1− s)Γ(1− s)

(1− s)

∫
RN

∫
RN

|u(x)− u(y)|2

|x − y |N+2s
dxdy

=

∫
RN

|∇u|2dx =

∫
Ω

|∇u|2dx = −
∫

Ω

u∆udx .
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Question

1 What are the Dirichlet and Neumann Boundary Conditions for the
fractional Laplace operator (−∆)s?

2 To obtain an explicit and a rigorous answer to the above question,
we need the following notions.

We need some appropriate Sobolev spaces.
We need a notion of a (fractional) normal derivative.
We also need an integration by parts formula for (−∆)s . That
is, an appropriate Green type formula for (−∆)s .
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Fractional order Sobolev Spaces

Let Ω ⊂ RN be an arbitrary open set and 0 < s < 1.

We denote

W s,2(Ω) :=
{
u ∈ L2(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x − y |N+2s
dx dy <∞

}
,

and we endow it with the norm defined by

‖u‖W s,2(Ω) =

(∫
Ω

|u|2 dx +

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x − y |N+2s
dx dy

) 1
2

.

Then W s,2(Ω) is a Hilbert space.
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Fractional order Sobolev Spaces: Continue

Let D(Ω) be the space of test functions on Ω. Let

W s,2
0 (Ω) = D(Ω)

W s,2(Ω)
,

and
W s,2

0 (Ω) =
{
u ∈W s,2(RN) : u = 0 a.e. on RN \ Ω

}
.

1 There is no obvious inclusion between W s,2
0 (Ω) and W s,2

0 (Ω).

2 If Ω ⊂ RN is Lipschitz, then we have the following situation.

If 1
2 < s < 1, then W s,2

0 (Ω) = W s,2
0 (Ω).

If 0 < s ≤ 1
2 , then W s,2

0 (Ω) = W s,2(Ω).

If 0 < s ≤ 1
2 , then W s,2

0 (Ω) and W s,2
0 (Ω) are different and

there is no inclusion. This follows from the fact that the
constant function 1 ∈W s,2

0 (Ω) but 1 ∈W s,2
0 (Ω).
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The Dirichlet problem for (−∆)s

Let g ∈ C (∂Ω). The classical Dirichlet problem for ∆ is given by

∆u = 0 in Ω, u = g on ∂Ω.

Let g ∈ C (∂Ω). Then the Dirichlet problem

(−∆)su = 0 in Ω, u = g on ∂Ω, (2.6)

is not well-posed. This follows from the fact that

(−∆)su(x) = CN,s

∫
Ω

u(x)− u(y)

|x − y |N+2s
dy + CN,s

∫
RN\Ω

u(x)− u(y)

|x − y |N+2s
dy .

Let g ∈ C0(RN \ Ω). The well-posed Dirichlet problem is given by

(−∆)su = 0 in Ω, u = g in RN \ Ω.
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The zero Dirichlet boundary condition (BC) for (−∆)s

1 The zero Dirichlet BC for ∆ is given by u = 0 on ∂Ω.

2 Let (−∆)sD be the operator on L2(Ω) given by{
D((−∆)sD) =

{
u ∈W s,2

0 (Ω) : (−∆)su ∈ L2(Ω)
}
,

(−∆)sDu = (−∆)su.

Then (−∆)sD is the realization in L2(Ω) of (−∆)s with the
zero Dirichlet boundary condition.
Here the Dirichlet BC is characterized by u = 0 in RN \ Ω.
Do not confuse (−∆)sD with (−∆D)s (the spectral fractional
Laplacian). The two operators are different.
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How to define a ”fractional” normal derivative?

Recall that if u is a smooth function defined on a smooth open set
Ω, then the normal derivative of u is given by

∂u

∂ν
:= ∇u · ~ν,

where ~ν is the normal vector at the boundary ∂Ω.

For 0 < s < 1 and a function u defined on RN we let

Nsu(x) = CN,s

∫
Ω

u(x)− u(y)

|x − y |N+2s
dy , x ∈ RN \ Ω,

provided that the integral exists. This is clearly a nonlocal operator.

Ns is well-defined and continuous from W s,2(RN) into L2(RN \ Ω).

We call Nsu the nonlocal normal derivative of u.
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Why is Ns a normal derivative?

Recall the divergence theorem:∫
Ω

∆u dx =

∫
Ω

div(∇u) dx =

∫
∂Ω

∂u

∂ν
dσ, ∀ u ∈ C 2(Ω).

For (−∆)s we have the following:∫
Ω

(−∆)su dx = −
∫
RN\Ω

Nsu dx , ∀ u ∈ C 2
0 (RN).
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Why is Ns a normal derivative?

Green Formula: ∀ u ∈ C 2(Ω) and ∀ v ∈ C 1(Ω),∫
Ω

∇u · ∇v dx = −
∫

Ω

v∆u dx +

∫
∂Ω

v
∂u

∂ν
dσ.

For (−∆)s we have the following: ∀ u ∈ C 2
0 (RN) and v ∈ C 1

0 (RN),

CN,s

2

∫
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x − y |N+2s
dxdy

=

∫
Ω

v(−∆)su dx +

∫
RN\Ω

vNsu dx .

R2N \ (RN \ Ω)2 := (Ω× Ω) ∪ (Ω× (RN \ Ω)) ∪ ((RN \ Ω)× Ω).
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Why is Ns a normal derivative?

For every u, v ∈ C 2
0 (RN) we have that

lim
s↑1−

∫
RN\Ω

vNsu dx =

∫
∂Ω

v
∂u

∂ν
dσ.

Observation

We have shown that Ns plays the same role for (−∆)s that the classical
normal derivative ∂

∂ν does for ∆.
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The Neumann problem for (−∆)s

1 f ∈ L2(Ω), g ∈ L2(∂Ω). The Neumann problem for ∆ is given by

−∆u = f in Ω,
∂u

∂ν
= g on ∂Ω.

It is well-known that the above problem is well-posed if and only if∫
Ω

f dx +

∫
∂Ω

g dσ = 0.

2 Let f ∈ L2(Ω) and g ∈ L1(RN \ Ω). We consider the problem

(−∆)su = f in Ω, Nsu = g in RN \ Ω. (2.7)

What is a weak solution of the Neumann type problem (2.7)?
When is the problem (2.7) well-posed?
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Another fractional order Sobolev space

Let g ∈ L1(RN \ Ω) be fixed and let

W s,2
Ω :=

{
u ∈L2(Ω), |g | 12 u ∈ L2(RN \ Ω),∫ ∫

R2N\(RN\Ω)2

|u(x)− u(y)|2

|x − y |N+2s
dxdy <∞

}
be endowed with the norm

‖u‖2
W s,2

Ω

:=

∫
Ω

|u|2 dx +

∫
RN\Ω

|g ||u|2 dx

+

∫ ∫
R2N\(RN\Ω)2

|u(x)− u(y)|2

|x − y |N+2s
dxdy .

Then W s,2
Ω is a Hilbert space.
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Weak solutions of the Neumann problem

A u ∈W s,2
Ω is said to be a weak solution of (2.7) if for all v ∈W s,2

Ω ,∫ ∫
R2N\(RN\Ω)2

(u(x)− u(y))(v(x)− v(y))

|x − y |N+2s
dxdy

=

∫
Ω

fv dx +

∫
RN\Ω

gv dx .

Well-posedness of the Neumann problem

Let f ∈ L2(Ω) and g ∈ L1(RN \ Ω) ∩ L∞(RN \ Ω). Then the Neumann
problem (2.7) has a weak solution if and only if∫

Ω

f dx +

∫
RN\Ω

g dx = 0.

In that case, solutions are unique up to an additive constant.
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The Riemann Liouville fractional derivative

Let α ∈ (0, 1) and define gα (t) :=


tα−1

Γ(α)
if t > 0,

0 if t ≤ 0.
It will be convenient to write g0 := δ0, the Dirac measure concentrated at
0. Let T > 0 and u ∈ C [0,T ], with g1−α ∗ u ∈W 1,1(0,T ). The
Riemann-Liouville fractional derivative of order α is defined by

Dα
t u (t) :=

d

dt

(
g1−α ∗ u

)
(t) =

d

dt

∫ t

0

g1−α (t − τ) u (τ) dτ.
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Properties of the Riemann Liouville fractional derivative

Let 0 < α < 1. Then the following assertions hold.

Dα
t 1 =

d

dt
(g1−α ∗ 1) (t) =

d

dt
(g2−α) (t) = g1−α(t) 6= 0.

Dα
t gα(t) =

d

dt
(g1−α ∗ gα) (t) =

d

dt
(g1) (t) = 0.

D1
t u =

d

dt

∫ t

0

g0(t − τ)u(τ) dτ =
d

dt
(u)(t) = u′(t).
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The Caputo fractional derivative

The classical Caputo fractional derivative of order 0 < α < 1 is defined by

Dαt u(t) =
(
g1−α ∗ u′)(t) =

∫ t

0

g1−α(t − τ)u′(τ) dτ.

Properties of the Caputo fractional derivative

Dαt 1 = (g1−α ∗ 0)(t) = 0.

D1
tu(t) =

∫ t

0

g0(t − τ)u′(τ) dτ) = u′(t).

(Problem). One needs more regularity for u. One also needs to
know u′(t) in order to calculate Dαt u(t) for 0 < α < 1.
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Modified Caputo derivative

We modify the fractional Caputo derivative as follows:

∂αt u (t) := Dα
t

(
u (t)− u (0)

)
=

d

dt

∫ t

0

g1−α (t − τ) (u(τ)− u(0)) dτ.

Properties of the modified Caputo derivative

∂αt 1 =
d

dt
(g1−α ∗ 0)(t) = 0.

∂1
t u(t) =

d

dt

∫ t

0

g0(t − τ)(u(τ)− u(0)) dτ) =
d

dt
(u(t)− u(0)) =

u′(t).

(Advantage). One does not need more regularity for u. One does
not need to know u′ in order to calculate ∂αt u for 0 < α < 1.
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Some fractional in time ODEs

The solution of u′(t) = zu(t) ( z ∈ C) is given by u(t) = u(0)etz .

If 0 < α ≤ 1, then the solution of Dαt u(t) = zu(t) is given by

u(t) = u(0)Eα
(
ztβ
)
.

where Eα is the Mittag-Leffler function defined for every z ∈ C by

Eα(z) =
∞∑
n=0

zn

Γ(αn + 1)
.

It is clear that E1(z) =
∞∑
n=0

zn

n!
= ez .
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Our control system

For 0 < α ≤ 1, 0 < s ≤ 1 and ω ⊂ Ω open, we consider the system
∂αt u(t, x) + (−∆)su(t, x) = f |ω×(0,T ) in Ω× (0,T ),

u = 0 (BC) in (RN \ Ω)× (0,T ),

u(0, ·) = u0 (IC) in Ω.

(3.1)
In (3.1), f is the control function that is localized in a subset ω ⊂ Ω and
u is the state to be controlled.

Definition of null controllability of (3.1)

We say that (3.1) is null controllable if there exists a control function f
such that the solution u of (3.1) satisfies u(T , ·) = 0 for some T > 0.
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Negative result for null controllability

Let 0 < α < 1. Then the system (3.1) is never null controllable.
That is, if 0 < α < 1, then there is no control function f such that
the solution u can rest at some time T > 0.

The same conclusion holds for any α 6∈ N.

Solutions of (3.1) are represented in terms of the Mittag-Leffler
functions. The above negative result for the null controllability is
essentially due to the asymptotic behavior of the Mittag-Leffler
functions with non-integer parameters α 6∈ N.

Question

What happens if α ∈ N but 0 < s < 1? We will concentrate on the case
α = 1.
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Our control problem for α = 1

Let Ω ⊂ RN be open, bounded and of class C 1,1. For ω ⊂ Ω open, and
0 < s < 1 we consider the following Schrödinger equation:

i∂tu(t, x) + (−∆)su(t, x) = f χω×(0,T ) in Ω× (0,T ),

u = 0 in (RN \ Ω)× (0,T ),

u(0, ·) = u0 in Ω.

(3.2)

f is the control function which is localized in ω ⊂ Ω.

u is the state to be controlled.

Well-posedness

∀ u0 ∈ L2(Ω) and f ∈ L2((0,T )× Ω), the system (3.2) is well-posed as a
Cauchy problem.
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The observability inequality

Let Γ0 := {x ∈ ∂Ω : (x · ν) > 0} and ω := O ∩ Ω where O is an open
neighborhood of Γ0 in RN . For u0 ∈ L2(Ω) and f ∈ L2((0,T )× Ω), let u
be the solution of (3.2). Then the following assertions hold.

If 1
2 < s < 1, then for any T > 0 we have that

‖u0‖2
L2(Ω) ≤

∫ T

0

∫
ω

|u(t, x)|2 dxdt. (3.3)

If s = 1
2 , then (3.3) holds for any T > 2Pd(Ω) =: T0, where Pd(Ω)

is the Poincaré constant for the embedding W s,2
0 (Ω) ↪→ L2(Ω).

If 0 < s < 1
2 such an inequality (3.3) does not hold.
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The null controllability for α = 1

Let Γ0 := {x ∈ ∂Ω : (x · ν) > 0} and ω := O ∩ Ω where O is an open
neighborhood of Γ0 in RN . For u0 ∈ L2(Ω) and f ∈ L2((0,T )× ω), let u
be the solution of (3.2). Then the following assertions hold.

If 1
2 < s < 1, then there is a control function f such that

u(T , ·) = 0 in Ω for any T > 0.

If s = 1
2 , then there is a control function f such that u(T , ·) = 0 in

Ω for any T > T0 := 2Pd(Ω).

If 0 < s < 1
2 , then the system is not null controllable.
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Main ingredients used for the proof

The main tool needed to show the above obervability inequality and
hence, the null controllability result is the following identity known as the
fractional version of the Pohozaev identity. Let δ(x) := dist(x , ∂Ω),
u ∈ C s(RN) and u = 0 in RN \ Ω, be such that

u ∈ Cβ(Ω) for some β ∈ [s, 1 + 2s].

u

δs
∈ C 0,γ(Ω) for some 0 < γ < 1.

(−∆)su is pointwise bounded in Ω.

Then the following identity holds.∫
Ω

(−∆)su (x · ∇u) dx =
2s − N

2

∫
Ω

u(−∆)su dx

− Γ(1 + s)2

2

∫
∂Ω

( u

δs

)2

(x · ν) dσ.
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The negative result for 0 < s < 1
2

The negative result is proved by direct computation with Ω = (−1, 1).

In fact, one used the fact that the eigenvalues of (−d2
x )s with zero

Dirichlet exterior conditions are given by

λk =

(
kπ

2
− (2− 2s)π

8

)2s

+ O(
1

k
) for k ≥ 1. (3.4)

Using (3.4) one proves that

λk+1 − λk ≥ γ > 0⇐⇒ s ≥ 1

2
. (3.5)

Finally one uses (3.5) to show that the observability inequality does
not if 0 < s < 1

2 and this implies that the system cannot be null
controllable if 0 < s < 1

2 .
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Our control problem for the wave equation (α = 2)

Let Ω ⊂ RN be a smooth open set with boundary ∂Ω. For ω ⊂ Ω open
and 0 < s < 1, we consider the following system:

∂ttu(t, x) + (−∆)2su(t, x) = f |ω×(0,T ) in Ω× (0,T ),

u = (−∆)su = 0 on (RN \ Ω)× (0,T ),

u(0, ·) = u0, ut(0, ·) = u1 in Ω.

(3.6)

f is the control function and u is the state to be controlled.

Notice that here 0 < 2s < 2. We define (−∆)2s as follows:

(−∆)2su = (−∆)s(−∆)su.
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Definition

We say that the system (3.6) is null controllable if there exists a control
function f such that the solution u of (3.6) satisfies

u(T , ·) = ut(T , ·) = 0 in Ω,

for some T > 0.
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The Null controllability result for the wave equation

Let Γ0 := {x ∈ ∂Ω : x · ν) > 0} and ω := O ∩ Ω where O is an open
neighborhood of Γ0 in RN . For (u0, u1) ∈W 2s,2(Ω)× L2(Ω) and
f ∈ L2((0,T ),W 2s,2(ω)), let u be the solution of the system (3.6). Then
the following assertions hold.

1 If 1
2 < s < 1, then there is a control function f such that

u(·,T ) = ut(·,T ) = 0 on Ω for any T > 0.

2 If s = 1
2 , then there is a control function f such that

u(·,T ) = ut(·,T ) = 0 on Ω for any T > T0 = 2Pd(Ω).

3 If 0 < s < 1
2 , then the system is not null controllable.
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Main ingredients needed

The main tools needed to show the above null controllability result are
the following.

Using the obervability inequality for the Schrödinger equation and
HUM (Hilbert Uniqueness Method) we get the items (1) and (2).

The item (3) follows from the eigenvalues gap conditions.
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Boundary control problem for the classical heat equation

The classical boundary control problem for ∆ is formulated as follows:
∂tu(t, x)−∆u(t, x) = 0 in Ω× (0,T ),

Bu = f χω×(0,T ) on ∂Ω× (0,T ),

u(0, ·) = u0, in Ω.

(4.1)

Here B is a boundary operator (Dirichlet, Neumann or Robin type).
u = u(t, x) is the state to be controlled and f = f (t, x) is the control
function which is localized on a non-empty subset ω ⊂ ∂Ω.
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What about a boundary control with (−∆)s?

Recall that we have mentioned above that the Dirichlet problem

(−∆)su = 0 in Ω, u = g on ∂Ω, (4.2)

is not well-posed. Therefore we have the following situations.

It follows from (4.2) that the system
∂tu(t, x) + (−∆)su(t, x) = 0 in Ω× (0,T ),

u = f χω×(0,T ) on ∂Ω× (0,T ),

u(0, ·) = u0 in Ω,

is not well-posed as a Cauchy problem.

This shows that a boundary control does not make sense for the
fractional Laplacian (−∆)s (0 < s < 1). That is, the control
function cannot be localized on a subset ω of ∂Ω.
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What about boundary control with (−∆)s?

The well-posed Dirichlet problem for (−∆)s is given by

(−∆)su = 0 in Ω, u = g in RN \ Ω. (4.3)

We have to the following situations.

Since (4.3) is well posed, it follows that the system
∂tu(t, x) + (−∆)su(t, x) = 0 in Ω× (0,T ),

u = f χω×(0,T ) in (RN \ Ω)× (0,T ),

u(0, ·) = u0 in Ω,

(4.4)

is well-posed as a Cauchy problem.

This shows that the control function should be localized in a subset
ω ⊂ RN \ Ω.

We shall call (4.4) an exterior control problem.
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What is so far known about the exterior control problem?

Given u0 ∈ L2(Ω), 0 < α ≤ 1 and ω ⊂ RN \ Ω an arbitrary non-empty
open, we consider the system

∂αt u(t, x) + (−∆)su(t, x) = 0 in Ω× (0,T ),

u = f χω×(0,T ) in (RN \ Ω)× (0,T ),

u(0, ·) = u0 in Ω.

(4.5)

Then for every f ∈ L2((0,T );W s,2(RN \ Ω)), the system (4.5) is
well-posed as a Cauchy problem.

Mahamadi Warma (UPR-Rio Piedras)The author is partially supported by the AFOSRNull Controllability of Fractional PDEs



Objectives of the talk
Space-time fractional order operators

Controllability results for space-time fractional PDEs
A new notion of boundary control

Open problems

Explicit representation of solutions

Let (−∆)sD be the realization in L2(Ω) of (−∆)s with the condition
u = 0 in RN \ Ω. Then we have the following.

Then (−∆)sD has a compact resolvent.

Let (ϕn)n∈N be the normalized base of eigenfunctions of (−∆)sD
associated with the eigenvalues (λn)n∈N.

The unique solution u of the system (4.5) is given by

u(t, x) = −
∞∑
n=1

(∫ t

0

(
f (t − τ, ·),Nsϕn

)
L2(RN\Ω)

τα−1Eα,α(−λnτα) dτ

)
ϕn(x).

Here Eα,α denotes the Mittag-Leffler function of two parameters
given by

Eα,α(z) :=
∞∑
n=1

zn

Γ(αn + α)
, z ∈ C.
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An exterior controllability result

Let ω ⊂ RN \ Ω be an arbitrary non-empty open set. Then the system
(4.5) is approximately controllable for any T > 0 and f ∈ D(ω × (0,T )).
That this,

{u(·,T ) : f ∈ D(ω × (0,T ))}
L2(Ω)

= L2(Ω).
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What is needed in the proof of the approximate controllability?

We prove first the unique continuation property of the eigenvalues
problem. That is, let λ > 0 and ϕ ∈W s,2(RN) satisfy

(−∆)sϕ = λϕ in Ω and ϕ = 0 in RN \ Ω.

Let ω ⊂ RN \ Ω be a non-empty open set. We have the following.

If Nsϕ = 0 in ω, then ϕ = 0 in RN . (4.6)

To prove (4.6) one uses the following.

If u = (−∆)su = 0 in ω, then u = 0 in RN . (4.7)

Notice that (4.7) does not make sense for a local operator like ∆.
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What is needed in the proof of the approximate controllability?

The dual system associated with the system (4.5) is given by
Dα

t,T v + (−∆)sv = 0 in (0,T )× Ω

v = 0 in (0,T )× (RN \ Ω)

I 1−α
t,T v(T , ·) = u0 in Ω.

(4.8)

Using some important tools of analytic functions we prove that the
solution of (4.8) satisfies the unique continuation principle. That is,
let ω ⊂ (RN \ Ω) be an arbitrary non-empty open set.

If Nsv = 0 in (0,T )×O, then v = 0 in (0,T )× Ω. (4.9)

We obtain the approximate controllability as a direct consequence of
the property (4.9).
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Open problem: The heat equation (Interior control)

Let 0 < s < 1 and consider the following system
∂tu(t, x) + (−∆)su(t, x) = f χω×(0,T ) in Ω× (0,T ),

u = 0 in (RN \ Ω)× (0,T ),

u(0, ·) = u0, in Ω.

(5.1)

If N = 1, then (5.1) is null controllable if and only if 1
2 ≤ s < 1.

If N ≥ 2, we still DO NOT know if (5.1) is null controllable or not.

There is still no appropriate Carleman type estimates for (−∆)s .

For N ≥ 2, we only know that (5.1) is approximately controllable.

If N ≥ 1 and one replaces u = 0 in (RN \Ω)× (0,T ) by Nsu = 0 in
(RN \ Ω)× (0,T ), then the null controllability is still open.
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Open problem: The heat equation (exterior control)

Let 0 < s < 1, N ≥ 1 and consider the system
∂tu(t, x) + (−∆)su(t, x) = 0 in Ω× (0,T ),

u = f χω×(0,T ) in (RN \ Ω)× (0,T ),

u(0, ·) = u0, in Ω.

We still DO NOT know if the system is null controllable or not.

As we have said above, it is approximately controllable for any
T > 0 and any non-empty open set ω ⊂ RN \ Ω.

If one replaces u = f χω×(0,T ) by Nsu = f χω×(0,T ), then we have
proved that it is approximately controllable for any T > 0 and an
arbitrary non-empty open set ω ⊂ RN \ Ω.
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Open problem: The real wave equation (Interior control)

Let 0 < s < 1 and consider the following wave equation
∂ttu(t, x) + (−∆)su(t, x) = f |ω×(0,T ) in Ω× (0,T ),

u = 0 in (RN \ Ω)× (0,T ),

u(0, ·) = u0, ut(0, ·) = u1 in Ω.

We dot not know if the system is controllable. We just know that it
is approximately controllable.

If one replaces u = 0 by Nsu = 0, then we still do not know much
about the controllability.
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Open problem: Wave equation (exterior control)

Let 0 < s < 1 and consider the following wave equation
∂ttu(t, x) + (−∆)su(t, x) = 0 in Ω× (0,T ),

u = f |ω×(0,T ) in (RN \ Ω)× (0,T ),

u(0, ·) = u0, ut(0, ·) = u1 in Ω.

We dot not know if the system is controllable. We just know that it
is approximately controllable.

If one replaces u = f |ω×(0,T ) by Nsu = f |ω×(0,T ), then we still do
not know anything regarding the controllability.
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Open problem: Schrödinger equation (Interior control)

Let 0 < s < 1 and consider the following Schrödinger equation
i∂tu(t, x) + (−∆)su(t, x) = f |ω×(0,T ) in Ω× (0,T ),

Nsu = 0 in (RN \ Ω)× (0,T ),

u(0, ·) = u0 in Ω.

We still dot not know if the system is controllable.

The problem is that there is still no Pohozaev identity for (−∆)s

with the nonlocal Neumann exterior condition.
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